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SEXJETION OF PARAMETERS FOR A DyNAE4IC SYSTEM 

UNlXEXSAL FOR A GIVEN GROUP OF MlWEUEX 

ABSTRACT 3 36@ 
4c In the  common formulation of optimum control it is necessary /1 

t o  derive such control  functions and s e l e c t  such va lues  of control 

which would permit t he  t r ans fe r  o f  the  dynamic system from a given 

i n i t i a l  condition i n t o  a given f inal  condition f o r  a f ixed  period 

of time under the  maximum ( m i n i m u m )  of some funct ional .  

Optimum control  and optimum values  of the  parameters which 

are the  results of t he  formulated problem's so lu t ion  w i l l  depend 

i n  the general case upon maneuver parameters ( i n i t i a l  and final 

d u e s ,  t i m e  of maneuver completion). The optimum accomplishment of 

a l a rge  number of maneuvers w i t h  d i f f e ren t  parameters will require  

creat ion of a l a rge  number of nonidentical systems. 

The problem is  s t a t e d  of using a given number of various 

maneuvers by means of a given number of system types less than  the  

number of maneuvers. The value of t he  i n i t i a l  functional., averaged 

on the base of allmaneuvers,  i s  taken as a c r i t e r ion  of optimiza- 

t i o n .  Distr ibut ion of t he  required number of accomplished maneuvers 

according t o  t h e i r  parameters i s  taken t o  be known. /L 

.Y Numbers given i n  margin indicate  pagination i n  or ig ina l  foreign t e x t .  
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An a l t e rna t ive  statement of t he  problem of universal izat ion 

of optimum parameters f o r  the dpamic s y s t e m  i s  considered. 

assumed that t h e  s y s t e m  may consis t  of separate modules. 

l e m  is  s t a t ed  of t he  se lec t ion  of optimum parameters f o r  a module, 

It is  

The prob- 

universal  f o r  a l l  given maneuvers, and of optimum number of modules 

e-... n.-..-.L -ne.,rrPT. t VI bU\rJ.l L U Y L l r U .  L A  . 
Examples are considered f o r  so lu t ion  i n  appl icat ion t o  the  

problem of maximum payload delivery when a body of var iable  mass and 

r e s t r i c t e d  J e t  po-xer moves i n  a gravi ta t iona l  f i e l d .  It i s  shown 

t h a t  many maneuvers can be accomplished with a l i t t l e  decrease of t h e  

averaged payload by means of one type of propulsion system. 

of propulsion system permit u s  p rac t i ca l ly  t o  eliminate the decrease. 

When a universal module i s  used, the s a c r i f i c e  is  equally small f o r  

Two types 

d i f f e r e n t  changes of maneuver parameters. 

1. Let  u s  assume that t h e  behavior of a dynamic system is  described by 

the  following ordinary equations 

where x 

funct ions,  w1 the  constant control  parameterl, and the  point denotes time 

d i f f e r e n t i a t i o n  t .  

represents  t he  phase coordinates of the  system, q(t) the  cont ro l  
i 

S 
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The u s u a l  formulation of the optimum control  problem r e q u i r e s  t h e  con- 

s t ruc t ion  of such %(t) controls  and the se lec t ion  of such w parameters from 

the admissible group that would faci l i ta te  t h a t  t r ans fe r  of system (1.1) from 

a given i n i t i a l  condition 

1 

i n t o  i~ gf- FWal condition 

f o r  a fixea period of time T under a maximum (minimum) funct ional  

The optimum u&t )  controls .and opthum values of t h e  w1 parameters, re- 
/4 

present ing a so lu t ion  of t h e  formulated problem w i l l  general ly  depend on t h e  

"(1.1) are d i f fe ren t  if the  corresponding parameters of wc do not coincide. It 

is assumed that various U (t) controls may occur i n  the  same s y s t e m  (with the 

same l imi t a t ions ,  of course). 

k 

The optimum performance ( i n  a sense of t h e  (1.4) funct ional)  of a l a rge  

number of maneuvers with various cha rac t e r i s t i c s  

r equ i r e s  t he  c rea t ion  of a l a rge  number of nonidentical  systems. 

mi3Y prove t o  be unprofitable from a n  economic poin t  of view. 

The lat ter 
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The problem, as stated, is to achieve S various maneuvers by means of a 

given number of R of system types (1.1) less than S (1 Sn<f$. 

functional (1.41, averaged on the basis of all maneuvers, is used as a criterion 

of optimization. 

The vdues of 

The optimum 0 number of the system types should be determined from the 

minimum cost. This calls for a knowledge of the development cost of system (1.1) 

with parameters different from the previous ones, and a correspondence between the 

cost and functional (1.4). The latter problem is not discussed in this study-- 

the R number of system types is assumed to be preassigned. 

There is an alternative formulation of the problem regarding the universal- 

ization of optimum system parameters. If system (1.1) can be made up of modules, 

its w1 parameters may be expressed as follows 

where Awl represents the module parameters (in the particular case of fully 

autonomous modules, dependence (1.6) w i l l  be linear: w1 = olAwl). 

is to select the optimum Aw parameters of the modules, common to all S types 

of maneuvers, and the optimum number of o1 modules for each maneuver. 

The problem 

1 

2 .  The probability approach is used in the formulation of the optimiza- 

tion criterion for the two above-stated problems. The distribution of the 

required number of maneuvers to be carried out according to their parameters 

(1.5) is predefined. 

type is added to the total number of all types of maneuvers, this distribution 

could be treated as a distribution of the maneuver probability by the following 

I 3  the required number of completed maneuvers of each 

4 



The mean value of functional (1.4) will then f igu re  as a c r i t e r i o n  of ’ 

LA. 

optimization 

that is the value of funct ional  (1.4) averaged up on the  b a s i s  of al l  types of 

maneuvers (1.5). 

The maneuver parameters may be  preset  not discretely,  as i n  (l.?), but  

continuously 

where S may assume al l  the values from i n t e r v a l  (0, S) (not on ly  in tegers ) .  In  

this case, t he  probabi l i ty  d is t r ibu t ion  (2.1) is replaced by the dens i ty  of the 

probabi l i ty  d i s t r ibu t ion  

and f u n c t i o m l  (2.2) is changed t o  

3.  Let  W t  parameters of s y s t e m  (1.1) Ixf= . a m b l e  of assuming R va lues  

5 
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It i s  required t o  perform S types of maneuvers(l.5) with a (2.1) prob- ,_ 7 . - 
a b i l i t y  d i s t r ibu t ion  by insuring a maxhm (minimum) (2.2) functional.  

W e  wi l l  introduce the following new independent var iab le  for  each S-type 
~ 

maneuver i n  place of time t 

i n  such a way as t o  reduce the  f i n i t e  conditions (1.3) and funct ional  (2.2) 

t o  point  T = 1 which is common t o  a l l  maneuvers. 

Thereafter t h e  problem can b e  reduced t o  a standard formulation (1.1)- 

(1.41 for  an expanded system of d i f f e ren t i a l  equations : 

with  the following boundary conditions 

and func t iona l  
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Hergas before, x i represents  the phase coordinates, (S (n + 1) un i t s ) ,  

U,'"'(T) are the  control  functions,  and /sjzua\k the constant / f  - 
control  parameters (0 u n i t s ) .  

9 

In  the  case of t he  constant d i s t r ibu t ion  (2.3)-(2.5), we a r r i v e  at  the  

two-dimensional variational. problem f o r  t he  following system 

with t h e  following f i n i t e  conditions 

and funct iona l  

(3.7) 

0 1 

are phase coordinates and 

cont ro l  functions depending on two variables;  W1 = W,(s) are piecewise constant 

and cont ro l  functions with a p rese t  number of levels W 1 (w) (w = l,..., n) which 

depend only on s. 

/9 4. The above-cited va r i a t iona l  formulations of (3.2)-(3.4) and (3.5)- 

(3.7)are appl ied t o  t h e  universal  module problem with some changes. 

condi t ions (3.3) and (3.6) and functionals (3.4) and (3.7) remain unchanged. 

Boundary 
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There i s  some change i n  the  wri t ing of t he  d i f f e r e n t i a l  equations ( f o r  the sake 

of s impl ic i ty  of recording, the (1.6) dependence i s  assumed t o  be l inear ) :  

f o r  a d i sc re t e  d i s t r ibu t ion  of (3.2) 

f o r  a continuous d i s t r ibu t ion  of (3.5) 

In  the  (4.1) equations the constant control parameters Awl are the  same 

f o r  a l l  9; ol(s)  = 1,2,3,. . . integers  may b e  d i f f e ren t  f o r  each S number 

(unl ike (3.2) where the  n number of parameters W1 (w) is  l e s s  than t h e  S 

number of the equation groups). 

I n  the  (4.2) equations AW 
1 

is the constant control parameter 

- 3 4 %  /a d = 0 ) ; 9; 5 id) \  the  piecewise constant control  funct  

v a r i a b l e  which can assume any in t eg ra l  values (unlike (3.5) where the  number of 

z) l e v e l s  of t he  piecewise-constant control W , ( s )  i s  predefined). k 
5 .  Let  u s  consider t h e  problem of del iver ing a maximum payload by a 

variable-mass body moving i n  a gravi ta t iona l  f i e l d  with l imi ted  j e t  power. 

Assuming an i d e a l l y  controlled engine, equations (1.1) a r e  recorded as follows 

(see r e v i e w  (1)) 
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(5.1) 0 0 * +  - 
2 - 2 1 ,  . z r = a g + z  

. "  
- 3  are phase coordinates: G is  the  t o t a l  weight of the  current 

a 
V A ' t T  0 

Here G 

t 

reserve of working medium G = G (t) and payload G = const. , and 9 and $ 
P I . r ,  IT 

t.he radius vector and veloci ty .  

acce le ra t ion  by jet  thrus t ,  0 $Jf&)<i 

maximum, and j?(t)l = 1 the vector u n i t  of t h e  th rus t  d i rec t ion .  

Control functions: 0 r( a(+) 4 00 \is the  
T 

the  source power appl ied t o  %he 

The control 

p a r m e t e r  

is the  spec i f i c  grav i ty  of the power source which generally depends on G , and 

G,- O( "/. I s  t he  weight of the power source ( 
Y 

V 

N is  t h e  maximum power of the  source). The gravi ta t iona l  acce lera t ion  a t  point 
0 + 
( Z , t ) a n d  on the  E a r t h ' s  surface i s  indicated by 

*V,- / 

/ I I  I n i t i a l  conditions 

F i n i t e  conditions 

Functional of the  problem 

It is a known f a c t  t h a t  i n  this problem the  power of the  j e t  stream must  

always be a t  a maximum N ( t )  = 1. 

depend on the  engine parameteres: g(+) a e' function should be selected 

from the following minimum in t eg ra l  

Nor does the program of the je t  accelerat ion 

T 

(5.5) 
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and should f a c i l i t a t e  the t rmspos i t i on  of ( 2 .L g+ 3 between the two 

preset points  z3d { 34 , gi] during time T. 

"he f i r s t  equation of (5 .1)  may be integrated i n  quadratures and 

resolved i n  r e l a t ion  t o  t h e  functional of problem (1) 

(here G and G are asslmed t o  r e f e r  t o  the  i n i t i a l  weight of G ).  
Tr V 0 

(T, 3, ,& , g d ,  s\ may be i-7 - -- .. 
After that, the funct ional  of (5 .5)  

considered instead of [ T, 
( l . 5 ) ,  and the d i s t r ibu t ion  of t h e  maneuvers by type m y  be considered as 

predefined i n  the  following form 

,zo 9, , 3, \ as a cha rac t e r i s t i c  of maneuver 
2 

f o r  a d i sc re t e  d i s t r ibu t ion  of (2.1) 

f o r  a continuous d i s t r ibu t ion  of (2.4) 

The functional of the  problem is wri t ten down accordingly: 

f o r  a d i sc re t e  d i s t r ibu t ion  (compare (2 .2) )  

(5.9) 

3.0  
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, 

~ 

f o r  a continuous d i s t r ibu t ion  (compare (2.5)) 

, 

4.3 
I- 

If t h e  number of engine types i s  not r e s t r i c t e d ,  t h e  optimum weight of 

G will, as i s  known (l), amount t o  (with 0: = const.) 
V 

The performance of a given group of maneuvers ( 5  -7 )  and (5.8) by means of 

a p r e s e t  < S number of engine types(see poin t  3) i s  reduced t o  f ind ing  the  

m a x i m u m  sum of (5 .9 )  with 

or t h e  maximum i n t e g r a l  of (5.10) with 

(where Q i s  predefined, and optimum G(w) l e v e l s  should be se lec ted) .  
V 

I n  t h e  case of t he  problem involving the  se lec t ion  of t h e  optimum param- 

eters of t h e  universal  module ( see  point  4), DAG 

G 

should be subs t i t u t ed  for 
V 

i n  (5.9) and ( ? . lo ) ,  and t h e  spec i f ic  g rav i ty  of t h e  power source CU should 
V 
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b sumed as depending on G rather than on G . 
V V 

The func t iona l  of (5.9) w i l l  

then be expressed as 

and the func t iona l  of (5.10) as 

I n  (5.11), 0") represents  a r b i t r a r y  p o s i t i v e  in t ege r s ,  and in (5.12) 0 

s tands  for  a piecewise-constant funct ion with an a r b i t r a r y  number of i n t e g r a l  

levels. 

W e  w i l l  designate  

((x: 

an i n f i n i t e  power) and consider  some cases  when t h e  maneuvers are d i s t r i b u t e d  

cont inuously wi th in  a range of ( 4  ,P) ) with  equal p robab i l i t y ,  t h a t  is 
0 1  

i s  t h e  l i m i t i n g  va lue  of t h e  s p e c i f i c  g r a v i t y  of t h e  power source, assuming 

12 
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The dependence of the spec i f i c  gravity of t h e  pwer source on j b a b s o l u t e  

parameters ( G,  ~ 

the  methods of solution. The introduction of this dependence i n  a problem 

/a G, < o -ea. fd3 ) does not subs t an t i a l ly  a f f e c t  
* _  

involving a f ixed  number of G ( ~ )  l eve ls  does not produce any q u d i t a t i v e  

changes. 

dependence i s  important from a qual i ta t ive  point  of v iew.  

the  optimum s i z e  of the  module coverages t o  zero, b u t  if a x  /QAG, < 0 ,  

V 

In t he  case of a universal  module, however, the a(AG ) or & (AGv) 
V 

With 2 25 1 

//. the  optimum s i z e  of the  module i s  f i n i t e .  

The (5.10) funct ional  of the  f i r s t  problem is  therefore  recorded as 

l 
~ 

and the  ( 5 . 1 2 )  functional of t he  second problem a s  

(w) 
0 

(w)), where the  G(w) l e v e l  ' @1 V 
The (5.13) in t eg ra l  i s  used by segment (@ 

is  optimal 

13 



The moments of changing from one level t o  another are determined f r o m  the  

& maximum subintegral  expression of (5.13). After t h a t  t h e  problem i s  reduced t o  

f inding the  maximum f2 function of t h e  following var iables  
- 

prodded  that the  subintegral  expression of (5.13) i s  
.. 
which is equivalent t o  the following condition 

This procedure can be car r ied  o u t  numerically by the  steepest descent 

method. 

so lu t ion  of t he  following equation 

With ha = 1, the optimal value of the only G ( i )  i s  defined by the 
V 

i f  t h e  r o o t  of t h a t  equation is  found t o  b e  the lesser (1 - @ ), otherwise 
1 

GW = 1 - el. 
V 

Shown i n  f i g u E  1 i s  a graph of an averaged payload < Gn> for  various in t e rva l s  

I - 
poin t  ( P o .  The dot ted curves correspond t o  the  continuous optimum l a w  of change 

( f o r  i n f i n i t e  number of engine types see dotted l i n e  i n  

f igure  2).  It appears t h a t  one type of propulsion system (curves n = 1) can be 

used t o  approach very c lose ly  t o  the  m a x i m u m  possible  values of a payload. 

change t o  two types of propulsion system would reduce the loss  of payload almost 
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Figure 3 

t o  zero ( the  dotted curves and 62 = 2 curves, with the  exception of A@ = 0.8, are 

indis t inguishable  within t h e  sca le  of t he  figure). 

An instance of optimum dis t r ibu t ion  of the  weight of propulsion system G 
V 

by maneuver by @), with fj = 1.2, m, is c i t e d  i n  f igure  2. The G ( i )  ( @ o , A @ )  

dependence i s  presented i n  f igure 3 (0 = 1). 

respond t o  the  l imi ta t ion  of G ( i )  < 1 - 5,. 

V 

The s t r a i g h t  l i n e  segments cor- 

v \  
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Figure 5 

Figure 6 

The second problem c a l l s  f o r  the construction of a piecewise-continuous 

funct ion Q(@) with i n t e g r a l  l eve l s ,  and the  se l ec t ion  of the  value of parameter 

AGv, ensuring a m a x i m u m  of (5.14), on condition t h a t  the  subintegral  expression 

of (5.14) i s  nonnegative. 
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We w i l l  replace variable = 4 and introduce the following designation 

(5.14) w i l l  then be rewritten as fol lows 

The (5.15) integral, just like the (5.13), is taken by segment between the 

CT 

subintegral expression of (5.15) by the CT 

level changes, and the moments of change are determined from the maximum 
j - . 

integral values / 0; 
as j 

I E (i /4ai,); or E (1/,,46,)+1 ~ where E indicates the integral part of the 

number, see AG B( $ )  in figure 4). 

is shown in figure 5. 

coincide with the limiting dependence ( A G  

The K(x) dependence for various AG values 

< 0.1, the curves practically 
V V 

It appears thtit,with AG 
V 

+ 0 )  
V 

An approximate substitution of K (x, 0 )  for K (x, AGv)  in (5-16),(with 

A G ~  < 0,l)will produce 
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The f inding of AG optimum value requires a given dependence, 
V 

for  exaolple 

* //B 
where AGv is  the spec i f i c  grav i ty  of the m o d u l e  with puwer converging t o  zero. 

The nature of this dependence coincides with those described i n  l i t e r a t u r e  

(see f igu re  6 and 111) 
The permissible change in t e rva l  is determined from the  [@ o Y  "I range 

on the basis of the nonnegativity and payload for each raneuver 

+ 
- -  

In  t h i s  i n t e rva l  t he  <G > of (5.18) turns  out t o  be a monotonically 
ll 

decreasing function of & . Hence the  optimum x a n d  AG values are equal t o  
V 

With AG = 0.1, t he  problem can b e  solved numerically by the  u s e  of the  
V 

known K (x, AG )"dependence, presented i n  f igu re  5, and by formula (5.16). 

The r e s u l t s  of t he  solut ion are shown i n  f igures  7 and 8 (AG 

are similar t o  f igures  1 and 2. 

V 
Y 

V 
= 0.001) which 
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